

FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

GUÍA PARA LA CALIBRACIÓN DE ULTRASONIDO CON PALPADORES ANGULARES BAJO EL MÉTODO DE PULSO-ECO

Resumen: En esta guía de laboratorio se establece una metodología clara para realizar la calibración del equipo de ultrasonido USM 35X con palpadores angulares por medio de un ensayo no destructivo (END), teniendo en cuenta definiciones como tipo de onda, frecuencia, longitud de onda y tiempo, conceptos que deben estar claros para entender y realizar la práctica. También se encuentra descrito los instrumentos que se utilizarán y el proceso de calibración de palpadores angulares utilizando un patrón a la norma ASTM. Por otra parte, se va a tener en cuenta el proceso de medición Pulso-Eco y las implicaciones que trae, así como el tipo de palpador que se va a utilizar. Se recomienda verificar los elementos antes de utilizarlos, tener cuidado con el Ultrasonido y el palpador, y por ultimo dejar los elementos limpios y en orden después de utilizarlos.

1. INTRODUCCIÓN

1.1. PRINCIPIOS BÁSICOS DE LA ACÚSTICA 1.1.1.ONDA ACÚSTICA

El ultrasonido en un instrumento que trabaja con ondas mecánicas y cuya frecuencia está por encima de la audición del oído humano, este instrumento como lo menciona (Vera, Dedios, & Morales, Ultrasonido y Su Aplicacion, 2005) se basa en el principio del movimiento de una onda acústica que es afectada por el medio a través del cual viaja. Por otra parte, se distinguen tres diferentes tipos de ondas longitudinal, transversal y superficial (Rayleigh) según se como se muestra en la ilustración 1.

Ilustración 1. Transmisión de ondas en dos medios diferentes (Vera, Dedios, & Morales, Ultrasonido y Su Aplicacion, 2005)

Este tipo de ondas ocurre debido a la variación de parámetros como paso, frecuencia, tiempo y reflexión que están relacionados con propiedades físicas y mecánicas del medio en las que se propagan como es la dureza, módulo de elasticidad, densidad entre otros.

1.1.2.VELOCIDAD DE PROPAGACIÓN

La velocidad de propagación como lo menciona (Vera, Dedios, Morales, Palomino Peréz, & Santos De La Cruz, Ultrasonido y Su Aplicacion, 2005) es el parámetro ultrasónico más fácil de medir, en un medio homogéneo está directamente relacionado con el módulo de elasticidad, densidad del material, módulo de Poisson, y el grado de homogeneidad. Según el tipo de onda la velocidad también es diferente. La velocidad se relación con la longitud y frecuencia de onda como sigue:

$$V = \lambda \times f \tag{1}$$

Donde

V= Velocidad de propagación

 λ = Longitud de onda

f =Frecuencia

A su vez se tiene que la frecuencia está dada por

$$f = \frac{1}{T} (2)$$

Donde

T= Periodo

f =Frecuencia

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016

labtecmecanica@udistrital.edu.co

GL-SOL02

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Por otra parte, según la velocidad del sonido, la distancia recorrida por este está dada por:

$$S = \frac{V}{2 \times f} (3)$$

Donde

S= distancia recorrida por el sonido

V= Velocidad de propagación

f =Frecuencia

De lo anterior (Marin, 2015) menciona una relación existente entre la velocidad de propagación de las ondas longitudinales y transversales llegando a la conclusión que la velocidad de propagación de una onda transversal es cercana a la mitad de la propagación de una longitudinal en el mismo material.

MATERIAL	ONDA TRANSVERSAL (IN/Ms)	ONDA TRANSVERSAL (m/S)
Aluminio	0.35	3130
Berilio	0.35	8880
Latón	0.083	2120
Bronce	0.088	2235
Cadmio	0.0590	1500
Columbio	0.083	2100
Cobre	0.0890	2260
Vidrio	0.135	3430
Glicerina	-	-
Oro	0.047	1194
Inconel	0.119	3020
Hierro	0.127 3230	
Hierro fundido	0.087 - 0.126	2200 - 3220
Plomo	0.028	700
Magnesio	0.12	3050
Mercurio	-	-
Molibdeno	0.132	3350
Monel	0.107	2720

Tabla 1. Velocidades de propagación del sonido para varios materiales

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1

PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia

Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Níquel	0.117	2970
Nylon	0.043	1090
Platino	0.066	1670
Plexiglás	0.05	1270
Poliestireno	-	-
PVC	0.042	1060
Vidrio de cuarzo	0.0870	2210
Caucho vulcanizado	-	
Plata	0.036	1590
Acero 1020	0.128	3240
Acero 4340	0.128	3240
Acero inoxidable	0.123	3120
Teflón	0.25	6350
Estaño	0.66	1670
Titanio	0.123	3120
Tungsteno	0.113	2870
Uranio	0.78	1980
Agua	-	
Zinc	0.095	2410
Zirconio	0.089	2250

En la tabla 1 se muestran los valores de propagación del sonido para algunos materiales. Muestra los valores tanto de propagación de onda longitudinal (L-WAVE VELOCITY) como los de onda transversal (S-WAVE VELOCITY). Vale la pena tener en cuenta las unidades en las que está dada la tabla.

1.1.3.LEY DE SNELL

Las leyes que se aplican a la óptica funcionan de manera similar a ondas acústicas en algunos conceptos. La ley de Snell establece que cuando una onda incide sobre la superficie de separación entre dos medios, parte de la energía se refleja y parte entra en el segundo medio. El rayo transmitido está contenido en el plano de incidencia, pero cambia de dirección (rayo refractado) formando un ángulo con la normal a la superficie, dado por la Ley de Snell:

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Laboratorios y Talleres de Mecánica

$$\frac{\sinh \theta 1}{n1} = \frac{\sinh \theta 2}{n2} \tag{4}$$

Donde

 θ 1= Ángulo de incidencia en el medio 1

 θ 2= Ángulo de incidencia en el medio 2

n1= Índice de refracción en el medio 1

 n^2 = Índice de refracción en el medio 2

Ilustración 2. Esquema de refracción de una onda

1.1.4. MÉTODO PULSO-ECO

Este procedimiento según (Rimoldi & Mundo) utiliza la porción reflejada del sonido para evaluar los defectos o conocer espesores. El cabezal piezoeléctrico funciona tanto como emisor como receptor. Debido a que la energía recibida es mucho más débil que la emitida, aquí no puede operarse sobre la base de sonido continuo y se emplean exclusivamente impulsos de sonido. Un impulso eléctrico de cortísima duración genera onda ultrasónica, inmediatamente después, mientras aún se está propagando la onda, el mismo oscilador está listo para la recepción. La onda penetra el material hasta que, como resultado de una superficie limite, tiene lugar una reflexión total o parcial.

Puesto que se puede medir el tiempo de recorrido y se conoce la velocidad del sonido en el medio ensayado, este método permite establecer la distancia que existe entre el cabezal y las superficies reflectantes, sean estas superficies de la pieza o discontinuidades internas. Por eso

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

este método es muy utilizado, a la vez que solo existe una superficie de acoplamiento por lo que resulta mucho más sencillo mantener constante el acoplamiento

2. MATERIALES REQUERIDOS

2.1. Suministrados por el laboratorio:

2.1.1.Ultrasonido USM 35X

Ilustración 3. Equipo USM 35X

2.1.2.Cable BNC normal

Ilustración 4. Cable BNC normal

2.1.3.Plug Lemo Triack-BNC

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 5. Plug Lemo Triack

2.1.4.Bloque escalonado para calibración

Ilustración 6. Bloque de calibración tipo 2 IIW

2.1.5.Transductor 2.25MHz 0.5B SE0793

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 7. Transductor

Ilustración 8. Zapatas angulares de 45º, 60º y 70º

NOTA: El ángulo que trae las zapatas es el ángulo de incidencia del palpador para aceros, en caso de utilizar otro material remítase a la fórmula de Snell para calcular y conocer el ángulo real de incidencia del palpador para dicho material

2.1.7.Acoplante

Ilustración 9. Acoplante

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 8

3. OBJETIVO

Calibrar palpadores angulares teniendo en cuenta parámetros como velocidad del sonido en el material, distancias y espesores.

4. PROCEDIMIENTO El equipo USM 35X cuenta con los siguientes elementos de manejo LED A: Alarma de puerta R: Función de supresión activa Teclas especiales D: Función DUAL activa Teclas para para funciones seleccionar una especiales del función equipo. () B USM 35 Botón giratorio para O RO DO Botón giratorio para ajustar directamente la el ajuste directo de Ø amplificación la función ۲ seleccionada ē Ĩ Ī Ū ۲ 0 Tecla Encendido/ Tecla para cambiar entre los niveles de Apagado manejo Teclas para seleccionar el grupo de funciones

Ilustración 10. Elementos de manejo del instrumento

4.1. Funciones de la pantalla

En la parte inferior de la pantalla se muestran los nombres de los cinco grupos de funciones. El grupo defunciones seleccionado actualmente se muestra invertido.

labtecmecanica@udistrital.edu.co

GL-SOL02

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 11. Grupo de funciones

En la parte derecha de la pantalla, al lado de la imagen A, se muestran las funciones del correspondiente grupo de funciones. Al trabajar en el modo ampliado desaparecen las funciones y el manejo no es posible.

Ilustración 12. Imagen A enmarcado en rojo y Funciones del correspondiente grupo de funciones enmarcado negro

4.2. Teclas y botones giratorios 4.2.1. Teclas de función

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 - Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 10

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 13. Teclas de función

4.2.2.Tecla Encendido/Apagado

Apagar y encender el equipo

4.2.3.Teclas especiales

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 14. Teclas especiales

	Para seleccionar el ancho de paso del ajuste de la amplificación	
*	Para detener la Imagen A	
	Para mostrar la Imagen A ampliada	
20 ⁴	Para transmitir datos	
	Para registrar valores medidos y guardar datos	

4.2.4.Botones giratorios

El USM 35X está provisto de dos botones giratorios de mando. Con el botón giratorio izquierdo usted ajusta directamente la amplificación; el botón giratorio derecho sirve para ajustar la función seleccionada en cada caso. Con ambos botones puede efectuar ajuste paso por paso como también ajustes acelerados. El ajuste paso por paso se efectúa accionando ligeramente el botón giratorio, que se enclava en el paso siguiente. Para el ajuste acelerado, accione continuamente el botón giratorio, es decir con una velocidad constante. De esta manera puede pasar rápidamente entre ajustes muy diferentes.

4.3. Concepto operacional

Facultad Tecnológica Laboratorios y Talleres de Mecánica

El USM 35X dispone de tres niveles de manejo, entre los que se cambia pulsando la tecla El número sobre la línea de separación entre el primer y el segundo grupo de funciones le muestra el nivel de manejo en el que se encuentra actualmente.

Cada nivel de manejo contiene cinco grupos de funciones.

Primer nivel de manejo

BAS 1EMIS RECP aPTA 6PTA

Ilustración 15. Primer nivel de manejo

Segundo nivel de manejo

Ilustración 16. Segundo nivel de manejo

Tercer nivel de manejo

Ilustración 17. Tercer nivel de manejo

4.3.1.Seleccionar y ajustar funciones

Debajo de la Imagen A encontrará los cinco grupos de funciones de un nivel de manejo,

seleccionables directamente con la tecla correspondiente. El grupo de funciones seleccionando se representa invertido, y las cuatro funciones del mismo se representan a la derecha de la Imagen A.

Las funciones individuales también se seleccionan directamente con las teclas correspondientes.

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 18. Teclas para funciones correspondientes

Una vez entendido los elementos de manejo del equipo se procede a realizar los siguientes pasos:

4.3.2.Conectar el cargador al equipo USM35x, teniendo en cuenta que se debe que retirar la tapa de conexiones y tener precaución a la hora de conectar el plug del cargador de tal manera que el punto rojo del plug coincida con la línea roja del zócalo.

Ilustración 19. Zócalo del ultrasonido y plug del cargador

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 14

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 20. Conexión del cargador

- 4.4. Luego conectar el cargador a la red eléctrica.
- 4.5. Seleccionar el transductor 2.25 MHz 0.5B SE0793

Ilustración 21. Transductor

4.6. Seleccionar la zapata de 45º

Ilustración 22. Zapata 45º

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 15

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

4.7. Seleccionar el cable BNC normal

Ilustración 23. Plug BNC normal

4.8. Seleccionar el plug Lemo Triack-BNC

Ilustración 24. Plug Lemo Triack-BNC

4.9. Conectar el cable BNC al transductor

Ilustración 25. Conexión cable BNC al transductor 4.10. Aplicarle acoplante (Gel) al transductor

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 16

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 26. Aplicando gel al transductor

4.11. Acoplar la zapata al transductor teniendo en cuenta que hay que enroscarla cuidadosamente

Ilustración 27. Acoplando el transductor a la zapata

4.12. Posteriormente conectar el cable BNC al plug Lemo Triack-BNC, teniendo en cuenta que es necesario girarlo una vez se encuentre la guía para asegurar una buena conexión.

Ilustración 28. Conexión Cable BNC con Plug Lemo-Triack

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 17

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

4.13. Insertar el plug en el zócalo Lemo triack de anilla roja (receptor).

Ilustración 29. Conexión plug al zócalo Lemo Triack de anilla roja (receptor)

4.14. Encender el dispositivo

Ilustración 30. Encendido del dispositivo

4.15. Elegir el bloque escalonado para calibración de espesores

Ilustración 31. Bloque escalonado para calibración

4.16. Antes de efectuar cualquier tipo de medición, verifique las siguientes configuraciones: 4.16.1. Ajustes de idioma

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 18

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

- Vaya al tercer nivel de funciones pulsando dos veces el botón .
- Seleccione la función DIALOG pulsando el primer botón
- Gire la perilla del lado derecho hasta que encuentre el idioma deseado.

4.16.2. Ajuste de unidades

En esta guía se utiliza como unidad de longitud las pulgadas, debido a que las medidas del bloque de calibración están en esta unidad.

- Diríjase al tercer nivel de funciones pulsando dos veces el botón
- Pulse dos veces el botón que aparece como DIALOG con el botón correspondiente
 , allí se desplegará la función UNIDAD.
- Una vez allí se modifican con la perilla derecha a las unidades que se deseen manejar. El ultrasonido maneja dos opciones: trabajar en pulgadas (sistema ingles), o trabajar en milímetros (sistema internacional).

Si desea realizar un *ajuste fino* debe asegurarse de que aparece un símbolo al lado del valor, tal como se muestra en la ilustración 17. De no ser así proceda a pulsar de nuevo el botón

correspondiente al valor que desea variar.

Ilustración 32. Símbolo de ajuste fino

Si por el contrario desea un **ajuste más rápido** proceda a pulsar el botón 🚺 hasta que desaparezca el símbolo de ajuste fino.

Una vez se realiza la configuración inicial del equipo, se procede a realizar los siguientes pasos:

FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

En el cuadro de dialogo que aparece en el display se encuentra el grupo de manejo 1, seleccione la función **BAS** con la tecla correspondiente, y a su vez la función **CAMPO** con su respectiva tecla J. Esta deberá ser modificada de acuerdo a un rango que abarque las medidas a realizar. Para este caso y para que sea más entendible los resultados se tomará un campo de 10 in. La función CAMPO indica el rango de distancia que recorren las ondas y que se quiere que se muestre en la pantalla, por ejemplo, si se tiene una onda que tuvo un recorrido de 11 in, no aparecerá en la pantalla si tiene un CAMPO de 10 in, pero si modificamos nuestro CAMPO hasta un valor superior a 11 in aparecerá la señal.

Ilustración 33. Selección de la función BAS y modificación de la función campo

4.17. Asegurarse de que la función **RETARDO** y **RET. PAL** se encuentren en **0**. En el caso de que se encuentren en un valor diferente se procederá de la misma forma que en el paso

anterior, sólo que esta vez se pulsarán sus respectivos botones 🔍 encontrados en la parte derecha de la pantalla y la modificación de los valores se realizará con la perilla derecha.

	GE momention Technologies USM 35 A © R © D ©
	77.5d : Sa = CAMPO
*	E VEL-C
	■ 41.6%
CO8*	KE1.PAL = 0.000
	BAS EMIS RECP APTA 6 PTA
•	

Ilustración 34. Modificación de la función RETARDO

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 - Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 20

4.18. Posteriormente se debe ubicar el bloque de calibración de tal manera que los radios queden ubicados hacia el lado izquierdo y con las marcas que muestran el 0º hacia el frente, tal como lo muestra la siguiente ilustración. Este bloque posee las características de que tiene un radio de 4 in y otro (mostrado en la ilustración 37) de 2 in.

Ilustración 35. Posicionamiento del blogue de calibración

Ilustración 36. Radio de 2 in

4.19. Asegúrese de que la función Sa se encuentre activa, para verificar ello observe si en la parte superior de la pantalla aparecen las letras Sa como se muestra en la Ilustración 37.

De no ser así deberá pulsar el botón de niveles de manejo 🔽 que se encuentra en la parte inferior izquierda hasta llegar al nivel de manejo 2, donde se encuentra el grupo de funciones MEDI, MSEL, LCD, CFG1, CFG2. Una vez allí se seleccionará la función MEDI con

correspondiente. A su vez se selecciona la función S-DISP con el botón el botón

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 - Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 21

FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

se modifica con la perilla derecha hasta que aparezca Sa. Para terminar, es necesario volver a la función BAS presionando el botón de niveles de manejo 争.

Ilustración 37. Función Sa activa

4.20. Verificar que la amplitud y el paso de la amplitud sean de 45 dB y 0.5 respectivamente, en la parte superior izquierda de la pantalla. De no ser así, cambie el paso presionando el

botón 🛃 hasta que el paso corresponda a 0.5 tal como se muestra en la ilustración 40. Para ajustar la amplitud se mueve la perilla izquierda hasta que el valor corresponda a 45 dB.

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 39. Paso y amplitud modificados

4.21. Aplicarle abundante gel sobre la zapata de tal manera que se cubra toda la superficie de la zapata.

Ilustración 40. Bloque con acoplante (gel)

4.22. Se procede ubicando la marca de la zapata, sobre la línea 0º del bloque de calibración (zona delimitada por el círculo de color rojo en la ilustración 41 B), de tal manera que la sección de color negro esté orientada hacia las circunferencias del bloque de calibración tal como indica la flecha de la Ilustración 42 A. Se debe tener en cuenta que la cara lateral de la zapata coincida con la cara en la que se encuentra el radio de 4 in del bloque de calibración.

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 - Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 23

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

A)

B)

Ilustración 41 A) Marca de la zapata B) Posicionamiento del palpador sobre la línea 0º

Ilustración 42. A) Posicionamiento del palpador en el sentido de las circunferencias de calibración B) Posicionamiento del palpador en la misma cara de la circunferencia de 4 In.

4.21 Debe aparecer una señal en la pantalla, luego debe comenzar a buscar la señal en el ultrasonido. Si se moviera el transductor a lo ancho del bloque se observa cómo empieza a aparecer otra nueva señal, la cual corresponde al radio de 2 In. Observe que la señal del radio de 4 in aparece cercano a la línea 4 del eje horizontal de la pantalla (el cual corresponde al 40% del campo tomado), posteriormente aparece la segunda señal del radio de 2 in, cercana al valor 2 del eje horizontal (corresponde al 20%).

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 43. Señal del radio de 4 in.

Ilustración 44. Señal del radio de 2 in

4.23. Posteriormente se procede al nivel de manejo 2 con el botón 🚖 , una vez allí se selecciona la función CAL con su respectivo botón 🛆 ahí se ajusta el valor de S-REF1 y S-

REF2 a 2 in y 4 in respectivamente. Para ello se debe de presionar los botones correspondientes y modificar los valores con la perilla derecha hasta alcanzar los valores de 2 y 4 in

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 – Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 25

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

Ilustración 45. Modificación del S-REF 1 y S-REF 2

4.24. Luego de esto se volverá al nivel de manejo 1 pulsando el botón 🚖 dos veces, allí se entrará a la función **aPTA** con 🏊 y posteriormente se modifica **aLOGIC** con el botón 🗨 y luego la perilla derecha hasta llegar a la opción **posit**. Deberá aparecer una línea o un

punto de color rojo. Más adelante se debe modificar el **aANCHO** con el botón correspondiente y con la perilla derecha dejándolo en el valor de 1.000 in. Al finalizar este paso debe aparecer una línea roja.

Ilustración 46. Modificación de la función aLOGIC y posterior aparición de la línea roja. 4.25. Teniendo las dos señales en la pantalla se vuelve a la función CAL (remítase al paso 4.18),

pero esta vez se modifica el valor de **alNICIO** seleccionando el botón . Iuego se varía el valor con la perilla derecha y se observa que la línea roja comienza a moverse sobre la pantalla. La línea roja debe quedar sobre la señal que corresponde al radio de 4 in. Una vez esta línea ha sido ubicada, y el led rojo A ubicado encima de la pantalla empieza a brillar,

se presiona el botón 🖵 . Posteriormente a esto se debe observar que en la función CAL ha variado el valor de 0 a 1 y que en la parte inferior de la pantalla aparece un mensaje que dice "Echo is recordered". tal como se muestra en la ilustración 48.

Ilustración 47. Modificación de aINICIO hasta que el valor coincide con el del eco de 4 in.

Ilustración 48. Selección del eco de 4 in y posterior mensaje de "Echo is recordered".

4.26. A continuación, se repite el proceso, sólo que en esta ocasión se busca que la línea roja quede ubicada sobre la señal del eco del radio de 2 in (si tiene dudas remítase al paso anterior). Una vez ubicada la señal, se oprime de nuevo el botón 🖵 y se observará que

ahora el valor de la función CAL es 0 nuevamente y que aparece el mensaje en la parte inferior de la pantalla "calibración terminada".

Ilustración 49. Modificación de aINICIO hasta que coincide con el eco de 2 in y posterior mensaje de "Calibración terminada".

4.27. Después de esto se vuelve al nivel de manejo 1 con el botón 🗩 y en la función **BAS** se observa que el valor de VEL-C ha variado. Este valor representa la velocidad de propagación de onda transversal del sonido para el material del bloque de calibración dado en in/ms.

Ilustración 50. Velocidad del sonido transversal calculada por el ultrasonido.

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 - Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 28

4.28. Para continuar se debe de ajustar el retardo. Es necesario ir a la función aPTA

posteriormente ajustar el valor de aINICIO con la tecla , posteriormente con la perilla del lado derecho ir al valor de 4.000 in, el cual corresponde a la medida del radio más grande. El valor que muestra Sa debería ser muy cercano a 4.000 in.

Ilustración 51. Modificación del valor de aINICIO y verificación de Sa cercano a 4.000 in

4.29. Luego se vuelve a la función BAS con la tecla 📥 y luego a la función RET.PAL con el botón

◀ Con la perilla derecha se modifica el valor hasta que la línea roja coincida con la señal

del radio de 4 in y luego, con un ajuste fino (pulsando de nuevo el botón ()) se hace que el valor de Sa que aparece en la parte superior derecha de la pantalla nos diga que el eco se encuentra en 4.000

Ilustración 52. Modificación del valor de RET.PAL hasta que el valor de Sa es 4.000 in

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 - Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 29

4.30. Una vez verificado esto, se procede a observar que la segunda señal (correspondiente al radio de 2 in) se encuentra sobre la línea de 20% del eje horizontal. Como se sabe, la separación entre las dos señales debería ser la misma distancia que separa físicamente a los dos radios (en este caso la distancia de separación es de 2 in). Para comprobar que la calibración se realizó correctamente se procede a verificar esto. Se debe abrir una puerta

b con la función **bPTA** pulsando el botón 📥 respectivo y como paso seguido se modifica

🖳 y con la perilla derecha variar el valor hasta que la función **bCOINCI** presionando aparezca posit. Tal como se observa debería aparecer una nueva línea o punto verde.

Ilustración 53 Activación de la función bCOINCI y posterior aparición de la segunda línea

4.31. El paso a seguir es ubicar esta línea o punto verde sobre el eco de la señal de 2 in. Para ello

se debe de modificar el valor de **bINICIO** con el botón 👤 y la perilla derecha hasta dejarlo en 2 in. Luego se procede a modificar el valor de ancho de puerta con la función bANCHO correspondiente hasta dejarlo en un valor de 1.5. con el botón 🔳

Ilustración 54. Modificación del bINICIO a 2.000 y bANCHO a 1.5

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 - Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 30

UNIVERSIDAD DISTRITAL

FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

4.32. Luego se cambia al nivel de manejo 3 pulsando el botón 🕏 dos veces. Una vez allí se seleccionará la función MEDI con el botón 📥 correspondiente. A su vez se selecciona la función **S-DISP** con el botón 🕙 y se modifica con la perilla derecha hasta que aparezca Sb-a. Inmediatamente la pantalla mostrará un valor en la esquina superior derecha el cual corresponde a la distancia que existe entre el eco de 4 in y el de 2 in. Si la calibración se realizó adecuadamente debería aparecer 2.000. De no ser así es necesario repetir de nuevo todos los pasos.

Ilustración 55. Modificación de la función S-DISP y verificación de la distancia entre los dos ecos.

4.33. Para terminar, se debe volver a cambiar la función S-DISP y modificarla hasta obtener Sa (remítase al paso 4.23). Luego se deben dejar las funciones RET-PAL (paso 4.33), aANCHO (paso 4.28) en cero y dejar el ajuste de aLOGIC (paso 4.28) y bLOGIC (paso 4.34) en off.

5. RESULTADOS

	0.128	
Valor de VEL-C obtenido (Ve)	Valor teórico (remítase a la tabla 1) (Vt)	Porcentaje de error en la medición (%) $E = \frac{Vt - Ve}{Vt}$

Calle 68D Bis A Sur # 49F-70 Bloque 4 Piso 1 PBX 57 (1) 3239300 Ext. 5024 - Bogotá D.C., Colombia Acreditación Institucional de Alta Calidad. Resolución No. 23096 del 15 de diciembre de 2016 31

labtecmecanica@udistrital.edu.co

GL-SOL02

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad Tecnológica Laboratorios y Talleres de Mecánica

GL-SOL02

Para obtener el valor teórico remítase a la tabla 1 y tome el valor de S-WAVE para el acero. Recuerde que este valor está dado en in/Ms, y el valor dado por el ultrasonido está en in/ms, así que es necesario hacer la conversión con la siguiente ecuación.

$$Vt\left[\frac{in}{ms}\right] = Vt\left[\frac{in}{Ms}\right] * 1000$$
(5)

6. GLOSARIO

6.1. Puertas: las puertas en el ultrasonido sirven para medir la distancia recorrida por la onda sobre la cual está posicionada la puerta. El ultrasonido USM 35X cuenta con la posibilidad de abrir dos puertas. Estas puertas cuentan con la posibilidad de cambiar su altura respecto al eje horizontal (a/bUMBRAL), el punto de inicio (a/bINICIO), y el ancho sobre el cual leerá las señales (a/bANCHO).

7. RECOMENDACIONES

Verificar el estado de los elementos antes de utilizarlos.

Dejar los elementos utilizados en la práctica limpios y en completo orden.

Proyectó	Cristian Castañeda	Monitores académicos 2016-3
	Santiago Guzmán	
Revisó	Carlos Andrés Romero	Auxiliares de laboratorio
	Edgar Roncancio	
Aprobó	Luini Hurtado	Coordinador Laboratorios y Talleres de Mecánica
Fecha	19/09/2017	Versión 02